Bienvenidos a la Iberoteca del mundo libre.
Tesis

Distribuciones Cuasi-Estacionarias para el proceso de Bessei en el intervalo (0,1)

Editorial: Universidad de Chile
Licencia: Creative Commons (by-nc-nd)
Autor(es): Campos, Felipe

En la presente tesis se estudian las distribuciones cuasi-estacionarias para el proceso de Bessel en el intervalo (0,1]. Este proceso corresponde a una difusión uni-dimensional con coeficiente de drift singular en 0, la cual se extingue al llegar a 1. Debido a la naturaleza del problema, se hace un estudio sobre difusiones uni-dimensionales, tocando temas tales como condiciones de explosión, existencia y unicidad. Posteriormente se trata el problema en cuestión. La principal herramienta consiste en una representación espectral adecuada para el núcleo de transición del proceso de Bessel, obtenido a partir del Movimiento Browniano en la bola unitaria que se extingue al llegar a la frontera. Se demuestra que existe una única distribución cuasi-estacionaria para el proceso, que además resulta ser su límite de Yaglom. Se tocan algunos tópicos adicionales sobre el proceso de Bessel tales como su tipo de frontera y operadores diferenciales asociados. Esto dará orientación a una posible generalización de estos resultados a difusiones más generales.
[Santiago: 2017]

1.00 €


    Esta combinación no existe.


    Compartir:
    Esta es una vista previa de los documentos vistos recientemente por el usuario.
    Una vez que el usuario haya visto al menos un documento, este fragmento será visible.
    Documentos vistos recientemente