Propiedades catalíticas de nanopartículas y clústeres metálicos
Licencia: Creative Commons (by-nc-nd)
Autor(es): García, Saray
During the present PhD thesis, catalysts based on nanoparticles and metallic clusters of different sizes have been designed and synthesized, and their reactivity has been evaluated in selective hydrogenation reactions and in the activation of molecular oxygen. In addition, through the use of different spectroscopic techniques, a fundamental study has been carried out in order to determine and analyze the chemical properties of the active centers of the catalysts. In the case of metallic nanoparticles, the Au promoter effect on Pd catalysts supported on CeO2 in the selective hydrogenation of 1,5-cyclooctadiene has been studied, obtaining a highly active and selective catalyst for the corresponding alkene. In addition, isolated centers of reduced Pd have been identified as active centers in the reaction. This result has led to the interest in the controlled synthesis of metallic clusters of 5, 7 and 20 atoms in average. The synthesis has been carried out following an electrochemical procedure in the absence of protective ligands. Through the use of spectroscopic techniques, the stability of metallic clusters in the presence of oxygen, the activation capacity of molecular oxygen and oxidized species and the subsequent reduction of the cluster have been studied. Cu5 clusters have been identified as the most stable to oxidation. Finally, the catalytic activity of the electrochemical clusters in the Goldberg reaction was evaluated. Comparing the activity of the clusters with other types of copper catalysts, the atomicity of the active centers in the reaction has been determined, finding that it is between 2 and 7 atoms.
[Valencia: 2017]
Compartir:
Una vez que el usuario haya visto al menos un documento, este fragmento será visible.