Simulación Numérica de Ondas Viajeras del Sistema FitzHugh-Nagumo
Licencia: Creative Commons (by)
Autor(es): Mercedes, Rubio y Barboa, Glauce
El sistema FitzHugh-Nagumo tiene un tipo especial de solución llamada onda viajera, la cual tiene la forma u(x, t) = (x−μt) y w(x, t) = (x−μt), y es una solución estable en el tiempo. Nuestro interés es caracterizar numéricamente el perfil de una onda viajera (, ) y su velocidad de propagación μ(t). Con un cambio de variables, transformamos el problema de encontrar las soluciones en coordenadas originales a un problema de encontrar los equilibrios en un nuevo sistema de coordenadas llamado coordenadas móviles o sistema de coordenadas no locales. Con ejemplos numéricos demostraremos que las soluciones del sistema de EDPs en coordenadas no locales converge a una onda viajera del problema original. El sistema de coordenadas no locales también permite calcular la velocidad de propagación en forma exacta.
[Trujillo: 2018]
Compartir:
Una vez que el usuario haya visto al menos un documento, este fragmento será visible.